Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Zhifang Yu , ${ }^{\text {a }}$ Zhimin Zhao, ${ }^{\text {a }}$ Bing

 Zhao ${ }^{\text {b }}$ and Jianwei Sun ${ }^{\text {a }}$${ }^{\text {a }}$ Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
zhifang@public.tpt.tj.cn

## Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.045$
$w R$ factor $=0.120$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## 3-Hydroxy-1-phenyl-3-(3,4,5-trimethoxy-phenyl)propan-1-one

The title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$, was synthesized by the Reformatsky reaction in an aqueous medium. The benzene rings form a dihedral angle of 78.6 (1) ${ }^{\circ}$. Two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds of 2.921 (2) $\AA$ between the hydroxyl and carbonyl groups form a centrosymmetric dimer. These hydrogen-bonded rings are stacked along the $b$ axis, forming hydrophilic channels.

## Comment

The Reformatsky reaction (Bieber et al., 1997; Chan et al., 1994; Shen et al., 1997) is one of the most powerful and useful reactions in organic synthesis. It provides a good strategy for $\mathrm{C}-\mathrm{C}$ bond formation. In more recent work, different aqueous media for the Reformatsky reaction have been developed in our group. We have also reported a series of compounds synthesized using an aqueous system (Yu et al., 2003, 2004). A new compound, (I), has been synthesized by the reaction of 2bromoacetophenone with 3,4,5-trimethoxybenzaldehyde in the presence of zinc in an aqueous medium.

(I)

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. As a result of the conjugation of the aromatic ring and the carbonyl group, the system is close to being planar, and the $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$ torsion angle is $-165.84(17)^{\circ}$. The O atoms of the methoxy groups are almost coplanar with the benzene ring, with a mean deviation of 0.0265 (2) $\AA$. Molecules related by inversion symmetry are connected by two $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 5$ hydrogen bonds, generating a dimer (Table 1 and Fig. 2). The crystal packing involves a $\mathrm{C} 17-\mathrm{H} \cdots \mathrm{O} 2$ interaction (Table 1).

## Experimental

The title compound was synthesized by adding 3,4,5-trimethoxybenzaldehyde ( 4 mmol ) and 2-bromoacetophenone ( 6 mmol ) to a mixture of a saturated solution of calcium chloride ( 16 ml ), zinc ( 16 mmol ), ammonium chloride ( 2.0 g ), a trace amount of iodine, cetyltrimethylammonium bromide ( 0.006 g ) and tetrahydrofuran $(1.4 \mathrm{ml})$. After the mixture had been stirred at room temperature for

Received 14 October 2005
Accepted 2 November 2005
Online 10 November 2005

4 h , the reaction was quenched with hydrochloric acid ( $2 \mathrm{M}, 0.5 \mathrm{ml}$ ). The mixture was extracted with diethyl ether, evaporated and separated by flash chromatography (using ethyl acetate-petroleum ether). A white powder (yield 52\%) was obtained. Slow evaporation of a dichloromethane-petroleum ether solution afforded the title compound as single crystals. IR ( $\mathrm{KBr}, \nu \mathrm{cm}^{-1}$ ): 3458,$1682 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.95-6.66(m, 7 \mathrm{H}), 5.28(t, 1 \mathrm{H}), 3.88(s, 9 \mathrm{H}), 3.36(d, 2 \mathrm{H})$. Analysis caculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$ : C $68.35, \mathrm{H} 6.33 \%$, found $\mathrm{C} 68.42, \mathrm{H}$ $6.47 \%$.

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5} \\
& M_{r}=316.34 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=14.992(3) \AA \\
& b=5.0020(11) \AA \\
& c=21.237(4) \AA \\
& \beta=93.375(4)^{\circ} \\
& V=1589.8(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.322 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 1727 reflections
$\theta=2.7-25.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.26 \times 0.20 \times 0.14 \mathrm{~mm}$

## Data collection

| Bruker SMART CCD area-detector | 3265 independent reflections |
| :---: | :--- |
| diffractometer | 1938 reflections with $I>2 \sigma(I)$ |
| $\varphi$ and $\omega$ scans | $R_{\text {int }}=0.047$ |
| Absorption correction: multi-scan | $\theta_{\max }=26.4^{\circ}$ |
| $\quad(S A D A B S ;$ Sheldrick, 1996) | $h=-18 \rightarrow 12$ |
| $T_{\min }=0.977, T_{\max }=0.987$ | $k=-6 \rightarrow 6$ |
| 8459 measured reflections | $l=-20 \rightarrow 26$ |

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.120$
$S=1.01$
3265 reflections
215 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ( $\AA \mathrm{A}^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$ | $0.83(3)$ | $2.10(3)$ | $2.921(2)$ | $171(3)$ |
| $\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O} 2^{\mathrm{ii}}$ | 0.93 | 2.47 | $3.341(2)$ | 156 |

Symmetry codes: (i) $-x+2,-y+2,-z+2$; (ii) $x+\frac{3}{2}, y-\frac{1}{2}, z+\frac{3}{2}$.
All carbon-bound H atoms were positioned geometrically and refined as riding ( $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ ). For the CH and $\mathrm{CH}_{2}$ groups, $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ and for the methyl groups they were set equal to $1.5 U_{\text {eq. }}$. Atom H 4 was refined with $\mathrm{O} 4-\mathrm{H} 4=$ 0.83 (3) Å.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the State Key Laboratory of ElementoOrganic Chemistry, Nankai University. This research was


Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $35 \%$ probability level.


Figure 2
The crystal structure of (I), viewed along the $b$ axis. Dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
supported by the Visiting Scholar Foundation. The authors thank Tianjin University for support under the ' 985 ' Project .

## References

Bieber, L. W., Malvestiti, I. \& Storch, E. C. (1997). J. Org. Chem. 62, 90619064.

Bruker (1997). SMART, SAINT and SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Chan, T. H., Li, C. J \& Lee, M. C. (1994). Can. J. Chem. 72, 1181-1192.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shen, Z., Zhang, J. Q., Zou, H. X. \& Yan, M. M. (1997). Tetrahedron Lett. 38, 2733-2736.
Yu, Z.-F., Sun, J.-W., Zhao, B., Gu, X.-Y. \& Tian, Z.-Z. (2004). Acta Cryst. E60, o1135-o1136.
Yu, Z.-F., Zhao, B., Tian, Z.-Z. \& Gu, X.-Y. (2003). Acta Cryst. E59, o2020o2021.

