Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhifang Yu,^a Zhimin Zhao,^a Bing Zhao^b and Jianwei Sun^a*

^aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ^bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: zhifang@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.120 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Hydroxy-1-phenyl-3-(3,4,5-trimethoxy-phenyl)propan-1-one

The title compound, $C_{18}H_{20}O_5$, was synthesized by the Reformatsky reaction in an aqueous medium. The benzene rings form a dihedral angle of 78.6 (1)°. Two intermolecular $O-H\cdots O$ hydrogen bonds of 2.921 (2) Å between the hydroxyl and carbonyl groups form a centrosymmetric dimer. These hydrogen-bonded rings are stacked along the *b* axis, forming hydrophilic channels.

Received 14 October 2005 Accepted 2 November 2005 Online 10 November 2005

Comment

The Reformatsky reaction (Bieber *et al.*, 1997; Chan *et al.*, 1994; Shen *et al.*, 1997) is one of the most powerful and useful reactions in organic synthesis. It provides a good strategy for C-C bond formation. In more recent work, different aqueous media for the Reformatsky reaction have been developed in our group. We have also reported a series of compounds synthesized using an aqueous system (Yu *et al.*, 2003, 2004). A new compound, (I), has been synthesized by the reaction of 2-bromoacetophenone with 3,4,5-trimethoxybenzaldehyde in the presence of zinc in an aqueous medium.

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. As a result of the conjugation of the aromatic ring and the carbonyl group, the system is close to being planar, and the C10–C11–C12–C13 torsion angle is $-165.84 (17)^{\circ}$. The O atoms of the methoxy groups are almost coplanar with the benzene ring, with a mean deviation of 0.0265 (2) Å. Molecules related by inversion symmetry are connected by two O4–H4···O5 hydrogen bonds, generating a dimer (Table 1 and Fig. 2). The crystal packing involves a C17–H···O2 interaction (Table 1).

Experimental

The title compound was synthesized by adding 3,4,5-trimethoxybenzaldehyde (4 mmol) and 2-bromoacetophenone (6 mmol) to a mixture of a saturated solution of calcium chloride (16 ml), zinc (16 mmol), ammonium chloride (2.0 g), a trace amount of iodine, cetyltrimethylammonium bromide (0.006 g) and tetrahydrofuran (1.4 ml). After the mixture had been stirred at room temperature for

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

4 h, the reaction was quenched with hydrochloric acid (2 *M*, 0.5 ml). The mixture was extracted with diethyl ether, evaporated and separated by flash chromatography (using ethyl acetate–petroleum ether). A white powder (yield 52%) was obtained. Slow evaporation of a dichloromethane–petroleum ether solution afforded the title compound as single crystals. IR (KBr, ν cm⁻¹): 3458, 1682; ¹H NMR (CDCl₃): δ 7.95–6.66 (*m*, 7H), 5.28 (*t*, 1H), 3.88 (*s*, 9H), 3.36 (*d*, 2H). Analysis caculated for C₁₈H₂₀O₅: C 68.35, H 6.33%, found C 68.42, H 6.47%.

 $D_x = 1.322 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 1727 reflections $\theta = 2.7-25.9^{\circ}$

 $\mu = 0.10~\mathrm{mm}^{-1}$

Block, colourless $0.26 \times 0.20 \times 0.14 \text{ mm}$

3265 independent reflections

1938 reflections with $I > 2\sigma(I)$

T = 294 (2) K

 $R_{\rm int} = 0.047$

 $\theta_{\rm max} = 26.4^{\circ}$

 $h = -18 \rightarrow 12$ $k = -6 \rightarrow 6$

 $l = -20 \rightarrow 26$

Crystal data

$C_{18}H_{20}O_5$
$M_r = 316.34$
Monoclinic, $P2_1/n$
a = 14.992 (3) Å
b = 5.0020 (11) Å
c = 21.237 (4) Å
$\beta = 93.375 \ (4)^{\circ}$
V = 1589.8 (6) Å ³
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.977, T_{\max} = 0.987$ 8459 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0523P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.1076P]
$wR(F^2) = 0.120$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
3265 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
215 parameters	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{O4-H4\cdots O5^{i}}$	0.83 (3)	2.10 (3)	2.921 (2)	171 (3)
$C17-H17\cdots O2^{ii}$	0.93	2.47	3.341 (2)	156

All carbon-bound H atoms were positioned geometrically and refined as riding (C–H = 0.93–0.98 Å). For the CH and CH₂ groups, $U_{\rm iso}$ (H) values were set equal to $1.2U_{\rm eq}$ and for the methyl groups they were set equal to $1.5U_{\rm eq}$. Atom H4 was refined with O4–H4 = 0.83 (3) Å.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the State Key Laboratory of Elemento-Organic Chemistry, Nankai University. This research was

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Figure 2

The crystal structure of (I), viewed along the *b* axis. Dashed lines indicate $O-H\cdots O$ hydrogen bonds.

supported by the Visiting Scholar Foundation. The authors thank Tianjin University for support under the '985' Project .

References

- Bieber, L. W., Malvestiti, I. & Storch, E. C. (1997). J. Org. Chem. 62, 9061– 9064.
- Bruker (1997). SMART, SAINT and SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chan, T. H., Li, C. J & Lee, M. C. (1994). Can. J. Chem. 72, 1181-1192.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shen, Z., Zhang, J. Q., Zou, H. X. & Yan, M. M. (1997). Tetrahedron Lett. 38, 2733–2736.
- Yu, Z.-F., Sun, J.-W., Zhao, B., Gu, X.-Y. & Tian, Z.-Z. (2004). Acta Cryst. E60, 01135–01136.
- Yu, Z.-F., Zhao, B., Tian, Z.-Z. & Gu, X.-Y. (2003). Acta Cryst. E59, o2020– o2021.